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ForewordZ

It is possible to identify at least two bases upon which protocol
and training materials are currently being developed. One of these can
be described as logical or psychological, often based upon an analysis
of the teaching or learning process. The second of these is based on
an analysis of the subject matter, wherein the objectives in that subject
matter are translated into behavioral objectives from which teaching acts
are derived. The first of these strategies assumes, questionably, that
the teaching-learning process is uniform across all subject matter areas.
The second strategy never fully explains the analysis by which objectives
are derived in the first place, thus begging a primary question.

As a result of these two quite different orientations, we get two
quite different kinds of protocol and training materials. Analysis of
the teaching act leads predictably to the development of protocol and
training materials that emphasize such concepts as probing, approving,
questioning and problem setting. The resulting protocol and training
materials very often consist of filmclips from actual classroom settings
with concepts and skills developed and tested in simulated or live situ-
ations. On the other hand, reducing subject matter to behavioral objec-
tives predictably leads to the development of protocol and training
materials emphasizing such concepts a.: skills as assessment, mastery,
sequencing of instruction, planning instruction, and measuring outcomes.
The materials are much more likely to be in the form of paper and pencil
activities with evaluation either in "live" settings or by means of
printed instruments.

The paper which follows is different. Like the second strategy
above, it seems to be based on an analysis of a particular subject
matter area, in this case mathematics. The position argues that the
kinds of concepts and principles in mathematics are probably peculiar
to mathematics. Thus, the analysis is epistemological rather than
behavioral. It also argues that the particular characteristics of the
concepts and principles in mathematics may be correlated with teaching
moves designed with those particular concepts in mind. The authors'

reasoning seems to be this: one begins with development of a taxonomy
of the particular kinds of concepts that seem to have importance in the
mathematics curriculum. For example, there are denotative concepts and
attributive concepts. The former are either concrete or abstract and,
within each of those categories, either singular or general. Given this

classification system, which the authors define very specifically, it is
possible to identify and classify many different mathematical concepts.
The teaching of those concepts becomes an objective. The notion of a
"teaching move" is introduced and particular teaching moves are derived,
depending upon the kind of concept. A "strategy" then is a sequencing

of teaching moves. For mathematical principles, as opposed to concepts,
a simplified taxonomy is created, "moves" are again derived from cate-
gories of mathematical principles, and finally "strategies" are developed

from "moves."

1
The original study that resulted in this paper was supported by U.S.
Office of Education funds through the Leadership Training Institute
in Educational Personnel Development at the University of South Florida,

Tampa. The authors of this paper are (in the order their names appear)
at the University of Georgia, University of Wyoming and Illinois State

University.
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It would seem to be obvious that the protocol materials developed
from this kind of orientation would not lead either to materials on such
teaching behaviors as approving, probing or questioning, or to materials
focused on such objectives as assessment, mastery or planning. Rather,
the result would be materials useful in identifying attributive concepts,

concrete concepts, etc., within the subject matter and identifying such
teaching moves as a "single characteristic move" or "connotative move."
In terms of skills, one would expect students to become skilled in plan-
ning particular moves and accurately making the moves in live situations.
It would also suggest that the important higher-order skills would involve
implementing teaching strategies consisting of moves based upon an analysis
of the particular subject matter that is being taught at the time.

The authors make no claim regarding the generality of their model.
It is up to developers of training and protocol materials in other subject
matter areas to review this model and to imagine its implications if
applied to other areas of science, social studies, etc. It is an imagina-
tive, creative and refreshing departure from the strategies that presently
seem to be dominating efforts to develop protocol and training materials
in teacher education. The editors commend it to your attention.

L.D. Brown, Editor
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Protocol Materials in Mathematics Education:

Selection of Concepts

Thomls J. Cooney

Robert Kansky

Kenneth A. Retzer

The two major purposes of this paper are (1.) to identify concepts

which are important in the teaching of mathematics, including those whose

application to the teaching of mathematics is significantly different

from their application in other subject matter areas and (2.) to suggest

certain of those concepts for possible protocol materials development.

Our search for concepts in mathematics education will focus upon the

teaching of mathematics. It will, furthermore, be based upon an episte-

mological theory of teaching since such organized bodies of knowledge can

provide a basis for both conceptualizing and exemplifying various aspects

of teaching mathematics.

Survey of the Literature

A Theory_of Teaching Mathematics Based on Epistemology

It is generally recognized that extensive knowledge of both subject

matter and basic psychological principles applicable to classroom instruction

are essential aspects of a teacher's knowledge base. What is not as readily

recognized is the fact that there is another type of knowledge that is basic

to effective instruction. As Smith (1969) puts it:

It has only recently been recognized that there is another
sort of knowledge that can influence the performance of the
teacher: that used in thinking about the subject matter and
the logical operations used in manipulating it (p. 125).

One way to conceive of logical operations for manipulating mathematics

is to focus on objects of instruction, e.g., mathematical concepts and

principles. From this perspective one can conceptualize various teaching

acts, i.e., moves, for manipulating these types of mathematical knowledge.

One should realize that the objects of instruction are themselves a

determining factor in the way one manipulates the content being taught.



Smith (1969) writes:

The subject matter of each field of teaching is a mixture
of different forms of knowledge. All of the fields contain
concepts. Some contain laws or law-like statements. -Others
contain rules and theorems and still others include values,
either as major emphasis or as incidental to other forms of
content. It is important for the teacher to be aware of these
knowledge forms because studies have shown that each is taught
and learned in a different way (p. 127).

Smith further states:

Faculties in the various disciplines have failed to analyze
the content of instruction into its logically and pedagogically
significant elements. Teachers who are ignorant of these
elements do not know how to handle their content other than
by common sense. A teacher cannot'handle with skill a form
of knowledge he cannot identify and whose structure he does
not know (p. 127).

Thus, it seems reasonable to assume that knowledge relevant to the nature

of mathematics and of moves used in manipulating the objects of instruction

are highly relevant to teachers of mathematics.

This report will focus on pedagogical concepts for teaching mathematical

concepts and principles. An explication of mathematical concepts and prin-

ciples and of moves for teaching these types of knowledge will be given. To

begin, let us consider the nature of a mathematical concept.

A Concept of concept

Van Engen (1953) pointed to the confusion concerning the meaning of the

term concept. Cooney, Davis and Henderson (in press) note that one possible

explanation for this-confusion is that "concepts are complex objects, and

attempts to identify all of their salient characteristics have so far been

unsuccessful." Since the meaning of concept is central to this report, it

will be necessary to examine some points of view regarding a concept of

concept.

Many educators, educational psychologists and philosophers define

concept from the standpoint of concept formation; thus a concept is an

abstraction. It is the "characteristics or properties common to a set of

objects which in their concrete form are different in many respects

(Wehlage and Anderson, 1972, p. 17)." It is a kind of screen for separat-

ing examples from nonexamples. While an identifying term may be assigned

-9
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to a concept, a term is unnecessary to the existence of a concept (abstraction).

Psychologists, such as Bruner (1956), point out that a concer evokes

common verbal or nonverbal responses which a person makes to similar (not

necessarily identical) stimuli. Hence, to Bruner concept formation is a

categorization process; a concept is, therefore, a category:

To categorize is to render descriminably different things equivalent,
to group the objects and events around us into classes, and to respond
to them in terms of their class membership rather than their unique-
ness (p. 1).

While naming is only one form of response (verbal), it is important to Bruner

that this response form be consistent when it is used. The term employed in

such a response is arbitrary; the important condition is that the same term

be used in response to similar stimuli. In addition, a person's nonverbal

responses may be in such forms as use (e.g., blowing of a whistle) or rejec-

tion (e.g., avoidance of a hot object). These kiids of responses are also

acceptable evidence that a person has a given concept.

Still other theorists regard a concept as the meaning of the term used

to designate the concept, that is, a statement of the conditions under which

the term may be employed. Thus, teaching a concept is equivalent to teaching

how to use a term which designates the concept.

Wehlage and Anderson (1972) identify two basic definitions of concept.

It is either a mentalistic container which is comprised of "those character-

istics thought to be properties common and jointly peculiar to the denotation

of a particular set of objects, event, or the like" or "all of the associa-

tions one has with a term (p. 18)." In the latter case, a concept may be a

personal construction whose characteristics include not only those associated

by definition but also those associated by individual value systems or exper-

ience. For instance, the set of characteristics associated with horse may

include not only "four-legged mammal" but also "something of value."

The two definitions of concept given by Wehlage and Anderson (1972) are

based upon two quite different rationales. The writers note that the "view

that concepts are all of the associations one has with a term implies an

emphasis on the personally unique (p. 31)." By contrast, the view that a

concept is a set of common properties suggests a focus on similarities and

"directs one to focus on limitation and logical implication (p. 31)."

, ty
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According to Henderson (1967; 1970), a concept is an ordered pair. One

component of that ordered pair is a "designatory expression" and the other

is a set of rules for using the designatory expression (1970). He considers

the teaching of a concept to a student to be the same as teaching the

student how to use the designatory expression (1967), and subsequently

ieentifies three uses of designatory expressions (1970):

Connotative. The term is used to talk about the properties its
referents have in common or the conditions under which the term
would be properly applied.

Denotative. The term is used to identify examples and nonexamples
of the concept, that is, of members or nonmembers of the referent
set of the concept.

Implicative. Metalanguage is used to talk about the term itself
(rather than its referents) (p. 171).

The first two uses take place in the object language; the third requires

metalanguage in order that the term may be assigned a meaning through either

a stipulated-definition move or a reported-definition move (Henderson, 1970).

Henderson's concept of concept has lent itself to both an analysis of

the concepts of mathematics and also the identification and organization of

concepts in the teaching of mathematical concepts. Because of the extensive

analysis in the latter area, Henderson's point of view of concepts would

seem to have the greatest potential of providing a basis for the development

of protocol materials.

Mathematical Concepts

Unlike Brownell (1941) and his followers, who base their analysis of

teaching on a broadly defined meaningful-drill dichotomy. associated with

the "how" of teaching mathematics, Henderson (1969) begins with a parti-

tioning of the mathematical knowledge to be taught into concepts and prin-

ciples. Henderson (1970) presents a taxonomy of concepts based upon how a

concept is used. His first subdivision of concepts is into three classes:

Denotative. A concept which has a nonempty referent set
(i.e., for which there is at least one example). For
instance, the numbers 2 and 4 are in the referent set of
the denotative concept even number.
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Nondenotative. A concept which has an empty referent set
(i.e., for which there is no example). For example, perfect
number less than six has an empty referent set.

Attributive. A concept which is not a set selector. The

concepts rigor, truth and justice are attributive. While
one acknowledges the existence of these concepts, it is not
possible to point to an object or event and say "That is
rigor," or "That is truth," or "That is justice (p. 173)."

The teaching of denotative concepts accounts for a large part of in-

struction in mathematics; it is accomplished, generally speaking, by giving

examples. Attributive concepts are not taught directly, but rather by

inference from correlated denotative concepts; meaning is inferred from use.

Nondenotative concepts ordinarily are not taught. They arise from "man's

linguistic ability to put words toge.ler in meaningful expressions" (Cooney

et al., in press). In view of the preceding statements, it is understand-

able that nondenotative concepts play no significant role in Henderson's

taxonomy of concepts or in the analysis of teaching which follows. Moreover,

denotative concepts receive more attention than attributive concepts since

the former are taught directly, whereas the lacLe; zre taught indirectly

through the use of their denotative correlates.

For denotative concepts, Henderson (1970) identifies two second-order

subclasses:

concrete. A concept for which elemrnts of the referent set have
such physical attributes as size, shape, color, mass, volume or
location (in space or time).

Abstract. A concept for which elements of the referent set do not
have observable properties such as size, shape, color, mass, volume
or location (in space or time) (pp. 174-75).

For both denotative and attributive concepts, Henderson (1970) identifies

two other subclasses:

Singular. A concept having exactly one element in the referent

set.

General. A concept having more than one element in the referent
set (pp. 175-76).

These are second-order subclasses of attributive concepts and third-order

subclasses of denotative concepts. The tree diagram of the taxonomy given

in Figure 1 is that of Henderson (1970).

',41)
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Figure 1. Taxonomy of Concepts
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This taxonomy could be appended to include additional subclasses such

as simple/complex or precise/vague. However, the practical value of such

appending is unknown. Henderson (1970) observes:

How far the classification is extended by any person probably
depends on whether the extension is functional, that is, whether
the extension can be correlated with possible or actual differ-
ences in how teachers teach the various concepts (p. 176).

Since extension is, then, a practical matter in constructing a theory of

teaching and since Henderson's study of classroom episodes does not lead

him to suggest the need to add to the seven categories in the taxonomy of

Figure 1, it seems ill-advised to complicate the taxonomy until such time

as use of the teaching model gives evidence that further subdivisions might

be useful.

The Importance of Concepts

The importance of concepts and, hence, the teaching of concepts has

been attested to by various scholars. Some argue that concepts are the

foundation for all other cognitive knowledge. Generalizations and rules

of procedure are based upon them. Bruner (1956) specifies a variety of

reasons why concepts are important objects of instruction. The following

reasons are usually cited by Bruner and others as indications of why con-

cepts are important:

a. reduce complexity by classifying;

b. aid in identifying (and, hence, discriminating among)
objects in the environment;

c. aid in communication;

d. reduce the amount to be learned by making available
class labels;

e. permit the drawing of inferences about a labeled object;

f. provide a basis for further learning by aiding in forming
generalizations;

g. assist with reasoning and explaining, and;

h. help in organizing data.

It follows that conveying knowledge to students about concepts is essential

in the teaching of mathematics. Therefore, some of the means of teaching

mathematical concepts are promising subjects for protocols. Mathematics

teachers should be able both to observe and effect actions which teach these

concepts.



8

Teaching Mathematical Concepts

To enable one to discuss ways in which mathematical concepts can be

taught, Henderson (1970) employs the notion of a move, a move being "a

sequence of verbal behaviors by a teacher and students toward attaining

some objective (p. 177)." The construct of moves as conceived by Smith

et al.(1964), was used in the analysis of tapes of classroom teaching in

grades 8 through 12. The names given to various moves by Henderson are

somewhat different from those given by Smith; Henderson's names will be

used here simply because they have been selected with an eye to the teach-

ing of mathematics.

Henderson's first division of concept moves distinguishes moves in

the object language from moves in the metalanguage. The former deal with

the teaching of denotative or attributive concepts; the latter are defini-

tion moves which deal with the implicative use of a term. The outline of

moves used in teaching a concept which is to be presented here follows

that given by Henderson (1970). A tree diagram of this outline is given

in Figure 2 and serves as a guide to, and summary of, the detailed outline

which appears below.

In preparing that detailed outline, the authors borrowed definitions

and examples given by Henderson (1970) and by Cooney et al. (in press).

Following the name and definition of each move, sentences are listed which

exemplify that move. For simplicity those sentences are not listed in

quotation marks even though each example is a sample verbalization of a

text, teacher or student.

I. Moves in the object language

A. Connotative moves. A connotative move is one which is

based on the connotation of the term designating the

concept. It focuses upon the conditions connoted by

the term.

When applied to a denotative concept, a connotative

move is one in which a textbook, teacher or student

talks about the characteristics or properties of the

objects in the referent set determined by the concept.

When applied to an attributive concept, a connotative

move is one in which a person states or talks about the

conditions that are relevant for the term to be applied

15
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to something.

1. Single characteristic move. When applied to a denotative

concept, a single characteristic move is one which states

one characteristic or property of the element (s) of the

referent set.

A rhombus is equilateral.

Trigonometric functions are periodic.

When applied to an attributive concept, a single character-

istic move is one which states one relevant condition for

applying the designating term.

To be called prime, a number must be greater than 1.

2. Sufficient condition move. When applied to a denotative

concept, a sufficient condition move states, or discusses,

a condition (or conjunction of conditions) sufficient to

determine an object's membership in the referent set of the

term.

If a parallelogram is equilateral then it is a rhombus.

This rhombus is a square because it is equiangular.

Knowing that a numeral ends in 2 or 4 is sufficient to

tell one that the number named is an even number.

If each of two angles is a right angle, the angles are

congruent angles.

When applied to an attributive concept, a sufficient con-

dition move states or discusses a condition (or conjunction

of conditions) sufficient for applying the term.

If a number has only itself and 1 as positive, integral

divisors, then it can be called prime.

3. Necessary condition move. When applied to a denotative con-

cept, a necessary condition move states or discusses a prop-

erty which is necessary for an object to be in the referent

set of the term.

A quadrilateral is a rhombus only if it is equilateral.
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If a figure is a trapezoid, the sum of the measures of

its interior angles must be 360 degrees.

When applied to an attributive concept, a necessary condi-

tion move states a condition necessary for applying the

term.

For a number to be called square it must have only even

exponents in its prime factorization.

If a name for a number ends in 7, the number cannot be

called even.

4. Classification move. A classification move is one in which

a superset of the referent set of the term is identified,

discussed or elicited by a question. The word is, when

used in a classification move, is the is of set inclusion

or set membership and is followed by a predicate noun.

A trapezoid is a quadrilateral.

Area is a denominate number.

Every prism is a polyhedron.

5. Identification move. (Necessary and Sufficient Condition

Move). An identification move states the conditions which

are necessary and sufficient for an object to be in the

referent set of a term. The word is, when used in an iden-

tification move, is the is of identity.

A square is an equiangular rhombuF

A number having exactly two factors is a prime number.

A relation f is a function if and only if no two ordered

pairs in f have the same first component.

6. Analysis move. An analysis move names, describes or elicits

by a question one or more subsets of the referent set of the

term. It is not necessary that the collection of subsets

identified constitute a partition of the referent set of the

term.

The circle, parabola, ellipse and hyperbola are conic

sections.
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Kites and rectangles are quadrilaterals.

7. Analogy move. When applied to a denotative concept, an

analogy move is one which states that a referent of the

term is like something else or discusses in what way the

referent is like something else.

The system of integers modulo 7 is like the rational

number system since each is a field.

The equations 'X + 2 = X' and 'X - 2 = X' are alike in

that each has an empty solution set.

A square is like a triangle in that each is a rectilinear

figure.

When applied to an attributive concept, an analogy move

states that one property is like a,iother or discusses in

what way the properties are alike.

Associativity is like commutativity in that each deals

with a single binary operation.

8. Differentiation move. When applied to a denotative concept,

a differentiation move is one in which a referent of the

term is said to be different from something else or which

discusses the way in which the referent is different.

The system of integers is unlike the system of integers

modulo 8 in that the system of integers has no divisors

of zero.

A trapezoid differs from a parallelogram in that a trapezoid

has exactly one pair of parallel sides.

When applied to an attributive concept, a differentiation

move is one which states that a property is said to be

different from another property or which discusses the way

in which the properties are different.

Distributivity is unlike associativity in that distributivity

involves two operation
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B. Denotative moves. A denotative move is one in which either a

teacher, student or textbook names members or nonmembers of the

referent set of the concept. Since, by definition, an attri-

butive concept is not a set selector, an attributive concept

has no referent set. Hence, denotative moves apply only to

denotative concepts.

1. Example move. An example move is one in which one or more

examples of the referent set are given (stated, drawn,

pointed to, acted out, etc). Syntactically, an example

move makes use of a proper noun.

Six is a perfect number.

The numbers 1, 8, 27, 64 and 125 are cubed numbers.

2. Nonexample move. A nonexample move is one which gives one

or more examples of objects which are not in the referent

set.

Twelve is not a perfect number.
2

i3X is not a binomial.

3. Counterexample move. A counterexample move is a move in

which an object is designated which falsifies a generali-

zation which purports to characterize the members of the

concept's referent set. It is a move which is used in

response to the asserting of a false generalization.

Assertion: Every odd number is prime.

Response: Name the factors of 9.

Assertion: Every real number has a reciprocal.

Response: What's the reciprocal of zero?

4. Specification move. A specification move is one which

designates each of the members of the referent set.

The perfect numbers less than 30 are 6 and 28.

The four conic sections are the circle, the ellipse,

the hyperbola and the parabola.

5. Exemplification accompanied by justification move. In this

move, an example of the referent set is accompanied by a

reason why it is an example.
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Six is a perfect number because its factors (other than

6) are 1, 2 and 3 and the sum of those factors is 6.

5. Non exemplification accompanied by justification move.

In this move, an example of an object not in the referent

set is accompanied by a reason why it is not in the refer-

ent set.

Nine is not a prime number because it has three factors

(1, 3 and 9) whereas a prime number has exactly two

factors.

II. Moves in the metalanguage

A. Stipulated-definition moves. A stipulated definition move is

one in which a teacher encourages his students to invent a

name for an idea.

Teacher: Lori has suggested that it would be nice to have

a simple name for this relation we've been using

which m_ds each real number onto itself. What

shall we call it?

Student: The do-nothing function.

Teacher: Good enough. By 'do-nothing function' we will mean...

B. Reported-definition moves. A reported definition move states

or elicits the statement of the lexical definition of a term.

The symbol "IEf' is an abbreviation for "if and only if."

A triangle having exactly one symmetry is called "an isosceles

triangle."

A parallelogram is called a "rhombus" if and only if the

parallelogram is equilateral.

Strategies, in Teaching Concepts

A temporal sequence of moves is called a strategy (Henderson, 1970).

For example, a sequence of delnition/exemplification/nonexemplification

moves could be used to illustrate an expository teaching st,ltegy. A

sequence of example/nonexample/sufficient-condition moves could be used

to illustrate a guided discvery teaching strategy.

21.
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By identifying the conditions under which a strategy or its component

moves may be effective in helping certain kinds of students to learn a

specified concept, hypotheses about the efficacy of such teaching strategies

can be generated. In fact, there are a few studies which have investigated

certain strategies based upon the moves of this moiel.

Nuthall (1966), in a study using programmed materials with senior high

school students, concluded that strategies involving exemplification moves

in teaching selected social studies concepts (cultural symbiosis and ethno-

centrism) are most effective and that those using comparison movesl are

least effective. Although one might conjecture that this result would hold

for mathematical topics or for instructional modes other than program.

textbooks, these conjectures have not been investigated.

Rollins (1966), also using programmed materials, examined the efficacy

of three strateoles using examples and nonexamples to teach verbal concepts.

One strategy was comprised entirely of example moves, a second strategy

used example/nonexample pairs and the third strategy was comprised of a

set of example moves followed by a set of nonexample moves. No one of

these strategies was found to be more effective than any other across the

three ability levels (high, average, low) of eighth grade students in the

study.

A third study using programmed materials was done by Rector (1966).

Four programmed booklets were designed to teach eleven elementary probabil-

ity concepts to college freshmen; each. booklet employed one of four strategies:

characterization, characterization/exemplification, exemplification/charac-

terization, and exemplification/characterization/exemplification. Testing

at three levels of awareness (defined behaviorally and using the categories

of Bloom (19561), showed that the strategy consisting entirely of charac-

terization moves (i.e., moves which disclose characteristics of elements of

the referent set) was more effective than any of the other three strategies

with regard to promoting awareness at the level of knowledge and comprehension.

(The knowledge and comprehension level was considered to be the lowest level

of understanding of the three defined.)

1
Comparison and/or contrast moves are a subcategory of Henderson's 1967 model
for teaching mathematical concepts; they appear as analogy and differentiation
moves in the model reported in this paper.

9.*1
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At present, there is no convincing evidence with regard to the special

effectiveness of any particular strategy in teaching specified concepts to

any homogenous group of persons. The studies are few. Although the three

reported here all used a programmed presentation, no two used the same

strategies or comparable subjects. As a group, then, these studies suggest

little more than that "a teacher is largely free to choose among the various

eossible strategies in teaching a concept in mathematics (Henderson, 1970,

p. 195)." Since no one strategy has been identified by research as being

most effective in any given situation, Henderson (1969) concludes that

"other things being equal, the teacher may want to use different strategies

if for no other reason than to provide variety in his teaching (p. 13)."

A Concept of Principle

In reading the literature on teaching, one finds that the term principle

is frequently used but only rarely defined. The term is used in a variety of

ways and its use often results in ambiguity. To avoid this, an explication

of this concept will be given. We propose the following definition:

A principle is a true generalization or else an efficacious
prescription.

This definition is consistent with Henderson (1969), who notes that principle

usually refers to a generalization other than an existential generalization

or a prescription. To further explicate this concept, we will consider the

nature of mathematical generalizations and prescriptions.

The nature of mathematical generalizations. Wills (1970), defines a

generalization as a "sentence stating that each element of a specific set

has a particular property, or that some elements of the set do (p. 288)."

Wills discusses two types of generalizations, universal and existential.

To Wills a universal generalization is a "simple sentence that begins with

a universal quantifier, symbolized by V ; this means 'for any' and is the

beginning of a phrase that precedes a true statement (p. 289)." Similarly,

Wills considers an existential generalization as a "simple sentence that

begins with the existential quantifier, symbolized by 3 ; this means 'there

is---for which,' and it is followed by the appropriate statement (p. 289)."
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Wehlage and Anderson (1972) identify the following characteristics of

generalizations:

1. All generalizations are statements asserting a claim.

2. The claim is a relationship between examples of a concept

and some specified factor.

3. Sometimes these statements of relationship are asserted in

conditional form (If---then).

4. All these statements of relationships imply or directly

state a quantification claim.

5. Quantifiers are either uniform or statistical (e.g., all,

usually).

6. The nature of the claim asserted can be reversible or

irreversible, necessary or substitutable, or sufficient

or contingent (p. 58).

Although the authors are discussing generalizations in the context of social

studies curriculum, their characteristics are also appropriate for describing

most mathematical generalizations.

Exner and Rosskopf (1959) consider a generalization as a combination of

a quantifier and a predicate, a predicate being a sentence which indicates

a property of elements in a universal set. To Exner and Rosskopf, a universal

quantifier is an expression written next to a predicate whose presence indi-

cates that the property symbolized by the predicate holds for all individuals

in the universe. Thus, a sentence is a universal generalization when a uni-

versal quantifier is used next to a predicate as is illustrated below.

For every triangle, the sum of the degree measures of the
interior angles of the triangle is 180.

For every real number x, sin
2
x + cos

2
x = 1.

Similarly, the authors introduce an existential quantifier as an expres-

sion which conveys that there is at least one true instance of the predicate.

The combination of an existential quantifier and a predicate is an existential

generalization.

The following statement exemplifies an existential generalization.

There is at least one natural number n such that the sum of
the proper divisors of n is n.
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Retzer (1967) maintains that a generalization is recognizable by its

form. He stipulates that a universal generalization is a general statement

with two component parts, viz., a quantifier and an open sentence. Thus,

to Retzer, while the sentence:

All even numbers are divisible by 2

is a general statement, the statement below constitutes a universal generali-

zati on:

For each even number x, x is divisible by 2.

The quantifier in the latter statement consists of the phrase "For each even

number x;" the clause "x is divisible by 2" is the open sentence.

Retzer further points out that the quantifier contains two bits of infor-

mation, viz., what the universal set (i.e., the set of objects under consider-

ation) is and which elements of the universal set will produce true instances

of tiie open sentence. In the case of a universal quantifier, the message is

that each element of the universal set will produce a true instance; in the

case of an existential quantifier, the message is that there is at least one

true instance possible.

In school mathematics, the quantifier is often implicit. Examples of

such generalizations are given below.

If two sides of a triangle are congruent, then the angles
opposite these sides are congruent.

In a proportion, the product of the means is equal to the
product of the extremes.

In both cases, the quantifiers are implicit. In the first, the statement

holds for all triangles having two congruent sides. Similarly, the second

statement pertains to all proportions even though the quantification is not

explicit. It might be noted that in both of the given generalizations, a

common noun with the indefinite article a was used to make the generalization.

This is frequently the case when the quantifier is implicit in the general

statement.

The generalizations displayed above hold over a single universal set.

However, the quantification of some generalizations involves more than one

universal set. Consider the generalization given below.

For each convex polygon p and for each natural number
n > 3, if p has n sides then the sum of the degree
measures of the interior angles of p is (n - 2) x 180.
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This statement holds over two sets, viz., the set of convex polygons and the

set of natural numbers greater than 3.

The nature of mathematical prescriptions. Another kind of cognitive

knowledge is that of prescriptions. A prescription is an order, directive

or command. Prescriptions are not statements because they do not have the

property of being true or false (Henderson, 1961). Consider the following

mathematical prescription.

To produce a fraction equivalent to a given fraction,
multiply the numerator and denominator of the given
fraction by any nonzero real number.

This sentence is not declarative; it does not state what is the case. In-

stead, it is imperative; it directs one to perform a particular operation

to attain a certain end.

This suggests a difference in the use, syntax, and, hence, the logic

of generalizations and prescriptions. While prescriptions advise or give

directions, generalizations are used to declare, report, describe or con-

jecture what is the case about a set of objects. Furthermore, generalizations

are used to make assertions and thus, are truth functional; that is, either

the truth-value pe or the truth-value false can be assigned to generali-

zations.

Ordinarily, prescriptions are not considered to have a truth-value.

For example, it seems odd to say that the directive:

To multiply two powers of the same base, add the exponents
and use the sum as the exponent of the base of the product

is true. But we can define a truth-function, viz., if following the pre-

scription attains the identified end, assign the truth-value true; if not,

assign the truth-value false. Under this rule the prescription above is

true.

Now consider the prescription:

Get all terms containing the unknown by themselves
on one side of the equation.

In contrast with the former prescription, this prescription has no explicit

identification of the end to be attained. How is a truth-function to be

defined? The answer is that one cannot be defined without making some assump-

tions. But certain assumptions seem reasonable. The prescription is used

"6
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in a context, most likely that of solving a polynomial equation. Both the

teacher and students are aware of the objective, viz., solving the equation;

hence, this objective is implicit. Were it to be made explicit, the pre-

scription would become more definite. If we further assume that other oper-

ations will be performed on the equation, we can define a truth-function in

the same way we define the function for the former prescription.

Consider also the following bits of advice a mathematics teacher might

give.

a. To divide two fractions, invert the divisor and multiply.

b. To solve an equation of the form:

ax + b = c

first subtract b from each member of the equation and then

divide each member by a.

c. To solve the equation:

2x + 4 = 7

first subtract 4 from each member of the equation.

d. To evaluate 2
6

, first find 2
3
and then square the result.

e. To evaluate an expression of the form a2n, first evaluate an

and then square the result.

All of those locutions are prescriptions and truth-values could be assigned

as discussed above. Prescriptions a, b and e could be appropriately used

by a teacher when instructing students on how to divide fractions, solve

equations of a certain form, or raise a given real number to an even inte-

gral power, respectively. The directives given in c and d may be regarded

as instances of the more general prescriptions given in b and e. While

teachers often give specific directives, such as c and d, the directives

are based on prescriptions which apply to a more extensive domain. Similarly,

when a teacher is showing students how to divide fractions, he may give

advice pertaining to a specific example.

We shall call those prescriptions which apply to extensive domains

efficacious prescriptions. Efficacious prescriptions and true generali-

zations constitute what we have termed principles. Heretoafter, prescrip-

tions and generalizations will be used synonymously for efficacious pre-

scriptions and true generalizations, respectively.
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The Importance of Principles

Principles constitute a major component of knowledge taught in secondary

school subjects. Wehlage and Anderson (1972) in discussing the importance of

generalizations identify four basic functions of generalizations:

1. They serve as conclusions to particular efforts at inquiry.

2. Generalizations also provide the basis for generating new

hypotheses, i.e., what else might be true given the implica-

tions of a generalization?

3. Generalizations are indispensable in the operations cf explan-

ations and prediction.

4. General propositions are basic elements in building scientific

theory in that theories .consist of interrelated sets of generali-

zations about generalizations (p. 56).

Generalizations also play a major role in the structure and content of

mathematics. Exner and Rosskopf (1959) point out that the basic elements

of a mathematical system are as follows:

a. an underlying language;

b. a deductive logic system;

c. a vocabulary of undefined words;

d. a set of axioms, and;

e. theorems.

Two of these components, axioms (statements assumed to be true) and theorems

(statements whose verification is based on proof), can be stated as generali-

zations. Retzer (1967) states:

The structure of any branch of mathematics contains the axioms
which are assumed to be true and the theorems which are proved from
them. These axioms and theorems may be stated as generalizations.
Thus, generalizations occupy an important central position in the
structure of mathematics (p. 1).

In school mathematics, axioms and theorems usually consist of universal

generalizations as opposed to other types of generalizations.

Part of the significance of the classification of principles into

generalizations and prescriptions comes when one considers the use of these
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two kinds of principles. Consider the principles:

log 0 = y log x

antilog (log x) = x

whose variables are considered restricted to the proper domains. One might

say that anyone who knows these principles can apply them to obtain an ap-

proximation of a real number raised to a rational power. But teachers know

that many students cannot apply them readily. Hence, teachers teach a prin-

ciple which is prescriptive in form:

To calculate the power of a number, multiply the logarithm
of the number by the exponent of the power and find the
antilogarithm of the product.

Students can apply the prescriptive form more readily. In general, the im-

plications for action of principles which are prescriptions are clearer

than those of principles which are generalizations. As Henderson (1969)

puts it:

The implication for behavior of a prescription or algorithm is
explicit; this is the pedagogical advantage of a prescription.
In contrast, a slow learner may not know what to do after he
has been taught the correlative generalization. Hence, pre-
scriptions are useful in teaching skills (p. 14).

Since prescriptive principles advise and direct, they are of primary

importance in teaching skills. Although logically a student can become

skilled in performing a task solely by imitating the actions of another,

it is not a pedagogically sound practice for the acquisition of skills to

be based solely on imitation. Prescriptions can provide direction for

students who might be confused; they can make algorithms explicit for stu-

dents and provide a basis for understanding the procedure involved in a

given algorithm. In short, they can be a facilitating factor in students'

acquiring mathematical skills. While skills are not usually considered

cognitive knowledge, they are a basic component of what is taught and

learned in school mathematics. The acquisition and maintenance of skills

is essential for students involved in studying mathematics.

Because of the importance of learning mathematical principles, it

seems highly relevant to consider moves a teacher can use in teaching this

type of knowledge. We turn now to the consideration of teaching mathe-

matical principles.

gpn
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Teaching Mathematical Principles

A pedagogical model for teaching mathematical principles has been pro-

posed by Henderson (1969). For the most part the model was conceived through

interactions of observing classroom behavior and logical considerations. We

shall utilize this model in describing moves used in teaching principles.

Henderson (1969) identifies four basic aspects of teaching principles:

a. stating the principle;

b. clarifying the principle;

c. justifying the principle, and;

d. applying the principle.

In the first category, Henderson identifies three means by which a principle

can be brought to the attention of students. First, the principle may be

stated outright. Secondly, the principle may be referred to in the textbook.

Finally, it may be educed from students who have been engaged in a guided

discovery lesson.

There are, according to Henderson (1969), five ways in which a principle

can be clarified. These are:

a. paraphrasing the principle;

b. reviewing the meaning of terms in the principle;

c. analyzing the principle into its components, i.e., identifying

its hypothesis and conclusion;

d. giving instances, provided the principle is a generalization,

and;

e. demonstrating application, provided the principle is a pre-

scription (pp. 14-15).

Paraphrasing a principle involves stating the principle in different, assumedly

simpler words for students. It might also involve students stating the prin-

ciple in their own words, perhaps with the aid of a diagram. The second means

of clarifying a principle involves hypothesizing or determining through ques-

tions which terms in a generalization may be unfamiliar to students and then

reviewing the meaning of those terms. For example, suppose students were

considering the following generalization:

The centroid of a triangle divides each median of
the triangle into a ratio of 2:1.

30
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It is unlikely that this statement would have meaning for students if they

did not know what a centroid or a median is or what it means to divide a

line segment into a ratio of 2:1.

The third means of clarifying a principle (in this case a generaliza-

tion) is to point out the hypothesis of the generalization (when the gen-

eralization is expressed in the form of a conditional) and its conclusion.

It is important for students to understand these two components if they are

to prove the generalization and apply it correctly. Some students are un-

able to justify a generalization because they cannot decipher what conditions

are given and what must be deduced. The explicit identification of the com-

ponents of an implication stemming from a generalization is an important

pedagogical consideration in clarifying generalizations.

Sometimes students misuse a generalization because they are confused

as to what conditions must be satisfied before the generalization can be

appropriately applied. Consider the Pythagorean Theorem stated below:

In a right triangle tne sum of the squares of the measures
of the legs equals the square of the measure of the hypot-
enuse.

Implicit in this generalization is the implication that "If you have a right

triangle, then...." Thus, when a student concludes that a 3-4-5 triangle is

a right triangle because 3
2
+ 4

2
= 5

2
he has misused the given generalization.

In short, he cannot justifiably infer that such a triangle is a right triangle

because the inference scheme implied by the generalisation designates only

that if the triangle is a right triangle then 3
2
+ 4

2
= 5

2
, not conversely.

A fourth method of clarifying principles is the giving of instances in

the case where principles are generalizations. Instances of a generalization

are obtained by replacing each of the mathematical variables specified in the

generalization with a constant. The resulting statements (instances) are

truth functional and are necessarily true provided the generalization is true

and the constants are selected from the domain specified or implied by the

generalization. To illustrate, consider the generalization below(usually

referred to as the cozrzmunitative law for addition).

For all real numbers x and y,x+y=y+ x

Instances of this generalization can be obtained by replacing the variables
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x and y with constants, say 3 and .14. Thus, the resulting instance would

be:

3 + .14 = .14 + 3.

Similarly, a prescriptive principle can be demonstrated by selecting appro-

priate constants and using those constants to show how the task indicated

in the prescription is to be performed.

The third major category given by Henderson (1969) involves justifying

the principle. Wolfe (1969) defines justification as follows:

A binary relation which has as its domain the union of a set of
assertions and a set of actions, either performed or contemplated,
and which has as its range the union of a set of sets of reasons
and a set of sets of entities of evidente (p. 14).

In other words, Wolfe holds that there are two components to the justifica-

tion of statements. The first is the assertion to be justified and the

second is the sets of reasons offered in support of the given assertion.

Wolfe identified four kinds of content that are justified in mathe-

matics classrooms: universal generalizations, existential generalizations,

singular statements and proposed or completed actions. He then explicated

six kinds of evidence teachers use to support the four types of content:

Subsuming generalization. A universal generalization is

quoted of which the assertion is either an instance or a

consequence.

Supporting instance. A true instance of a generalization

is noted, making the generalization seem more plausible.

Search for a counterinstance. A counterexample which pro-

duces a counterinstance of a universal generalization is

noted or discussed, or the absence of a counterexample is

noted or discussed.

Deductive proof. A deductive proof is presented or discussed.

Pragmatic reason. A pragmatic reason in defense of a proposed

or contemplated action is noted or discussed.

Justified algorithm. An algorithm expressing verbally a per-

formed or proposed action or course of action is justified

mathematically.
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Henderson discusses various ways in which principles can be justified.

For principles that are generalizations, a teacher might exhibit, or ask

students to exhibit, instances which the students recognize as being true.

In conjunction with this exercise, a teacher might challenge students to

produce a counterinstairce to the generalization. If the students are unable

to produce one, then this may be taken as evidence that the generalization

is true. For example, if presented the generalization:

Any even number greater than 4 can be expressed as the
sum of two odd primes

students may search in vain for an even number greater than 4 which cannot

be expressed as the sum of two odd prime nu.nbers. Hence, the generalization

seems believable to them. Of course, this method of justification is not

conclusive. That is, one always runs the risk that the next case considered

will produce a counterinstance and, hence, disprove the generalization. It

should be noted that generating instances for students to consider may in

some situations clarify a generalization, while in others it may provide a

basis for justification. Perhaps an instance that helps clarify the meaning

of a generalization for one student provides evidence for another student

to believe the generalization is true.

A more conclusive method of justification is that based on proof, i.e.,

a deductive argument. Smith and Henderson (1959) identify the following

strategies of proof used to justify mathematical statements:

Counterexample. Finding a counterexample is a stratagem which

disproves a statement.

Detaching an antecedent (modus ponens). This kind of argument

fits the inference scheme [(pq)014.q.

Developing a chain of propositions. Sometimes we discover that

a proposition p can be established if we can prove q and q can

be asserted if r is true. For some reason, we know r is true.

Hence, by using the following inference scheme we can prove

p [rA(r+q)A(q4.0149. This stratagem is a repeated application

of detaching an antecedent stratagem.

Proving a conditional. This stratagem involves assuming the

antecedent (or its equivalent) and arguing the consequent (or

its equivalent).
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Reductio ad absurdam. This stratagem consists in accepting the

contradictory of the proposition to be proved and proving that

this leads to an inconsistent proposition, e.g., qto,q, which is

necessarily false. It then follows that the proposition under

consideration is true.

Indirect proof. This stratagem requires the formulation of a

true disjunction whose disjuncts are exhaustive of the domain

under consideration. Next, each disjunct is proved false ex-

cept for the given proposition. This kind of argument can be

characterized by the following inference scheme:

[(pvqv---vt)A(01)A---A0,0)]4p.

Proving a statement of equivalence. This involves proving a

proposition equivalent to the proposition to be proven. Assumedly

the equivalent proposition is easier to establish.

Mathematical induction. In this stratagem a proposition A con-

sists of an infinite sequence of propositions Al, A2, A3....

To prove A, one proves Al and the conditional Ar Aro, where

r is some positive integer. Then using the inference scheme indi-

cated in 2 above, the consequent A is established.

The first of these stratagems can be used to disprove a universal generali-

zation. Each of the others are means by which a generalization can be

verified in a deductive manner.

Finally, Henderson (1969) points out two ways in which prescriptive

principles can be justified. The first involves demonstrating that follow-

ing the prescription will lead one to the correct answer. This method is

analogous to what Wolfe (1969) calls pragmatic reason. Showing students

how to determine if a number is divisible by 3 or 9 by summing the digits

and deciding if this sum is divisible by 3 or 9 is a procedure which is

seldom justified to students in terms of a deductive argument. Rather,

students become convinced the prescriptive principle is true by virtue of

it "working" in every case that it is applied.

The second method relies on showing that the prescription is justified

in terms of previously established generalizations. Wolfe refers to this

method as justified algorithm. Consider the often used prescription, "To

divide two fractions, invert the divisor and multiply." This prescription

34
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can be shown to follow from basic axioms and definitions of arithmetic,

for example:

a d a 1 Definition of division (i.e., a b

is defined to be a x 1, b 0 0).
c E

where b 0, c 0, and d 0 0

a

a 1 bbE-A -a- - -a-

a a C

T-
-a- -e

7"x?

acac
d c

1x
dc

a c

IT- ir a c
x

1

.*.a d_ac
-6- 4. - -6- x a-

Definition of multiplication of
rational numbers.

Theorem: Va, Vb # 0, ac 0 0

a ac
b be

The product of a number (excluding zero)
and its reciprocal is 1.

Division propsty of one.

Transitive property of equality.

The last category of moves for teaching principles discussed by Henderson

is that of application. This involves using the generalization to work exer-

cises, solve problems or to generate additional knowledge.

Cooney et al.(in press) also categorize moves for teaching a generali-

zations into four basic categories:

1. Introduction

2. Interpretation (clarification)

3. Justification

4. Application.

These categories are quite similar to those explicated earlier by

Henderson (1969). Briefly, introducing a generalization involves focusing

a student's attention on the generalization, establishing an educational

objective involving the generalization and providing motivation for learning.
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The second category includes paraphrasing, reviewing any constituent

concepts conjectured to be the source of a lack of comprehension, providing

instances and analyzing the generalization into its component parts (hypo-
.,

thesis and conclusion).

Justification moves involve the giving of instances, challenging stu-

dents to produce counterinstances, or providing a deductive argument esta-

blishing the generalization.

Applying the generalization is essentially the same as the moves dis-

cussed earlier involving application.

Strategies in Teaching Principles

In the preceding section,various moves or logical operations were

discussed that are appropriate for teaching principles. From these, a

teacher can form sequences of moves and thereby create a strategy for

teaching a given principle. For example, a viable strategy might consist

of the following moves: focus, motivation, paraphrase, instantiation,

justification (proof) and application. Another possible strategy might be

the sequence of focus, objective, review, justification (perhaps presenting

instances) and application moves. The selection of a viable teaching

strategy will depend on the maturity and ability of students, the complex-

ity of the principle and other factors relevant to formulating teaching

strategies. At presents there is not adequate research indicating which

strategies are most effective.

One can conceptualize a guided discovery approach and an expository

approach using the moves explicated above. Typically, a discovery lesson

will involve instantiation moves prior to asserting or stating the prin-

ciple. In this kind of strategy the asserting of the principle is likely

to occur near the completion of the lesson, if it appears at all. On the

other hand, an expository approach is usually characterized by stating the

principle early in the lesson, with other introduction, interpretation,

justification and application moves to follow. Usually discovery lessons

focus on principles that are generalizations rather than prescriptions.
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Listing of Concepts Selected

The selection of concepts for protocol production entailed certain

constraints. Concepts sought were to be those of mathematics education

rather than mathematics. The concepts were to be, as nearly as possible,

unique to the field of mathematics education. Concepts sought were to be

identifiable and portrayable in the sense that they can be adequately

described, and possess behavioral indicators. Finally, concepts sought

were to be in the public domain of literature in mathematics education

rather than being of limited usage or obscure.

Clearly, the teaching moves selected are concepts in mathematics

education. These concepts are unique to mathematics education only in

the following sense. Mathematics has been subjected to an analysis of

the types of knowledge which comprise it, viz., concepts, principles,

facts and skills. Also, transcripts of classrooms in which those kinds

of knowledge were taught have been studied to identify the verbal moves

which are appropriately used to teach that type of subject matter. In

no other content field have both been done simultaneously.

The concepts suggested for protocol development are a subset of the

verbal moves outlined in the first part of this paper and, as such, are

clearly definable and in the public domain. These concepts are listed

below, along with the indicators which give evidence that they are por-

trayable. Further discussion on the rationale for selecting these con-

cepts appears in the last section of this paper.

Concept Moves Selected

Six pedagogical concepts (concept moves) are suggested for protocol

development with respect to teaching mathematical concepts. Each of the

concept moves was explicated previously. Each move in the following list

is accompanied by a collection of key words and phrases (or expressions)

which would seem to indicate the presence of the associated move:

1. Identification move (Necessary-and-Sufficient Condition Move).

Key expressions: necessary and sufficient

if and only if
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2. Sufficient Condition Move.

Key expressions: sufficient
if-then
since

because
provided that

3. Necessary Condition Move.

Key expressions: necessary
has to
implies
must
only if

4. Analogy Move.

Key expressions: like
comparable to
similar to
same as
compare

5. Differentiati(n Move.

Key expressio2s: unlike
differs from
contrast
not the same as

6. Counterexample Move.

Key expressions: consider
how about
suppose that

Principle Moves Selected

This section will focus on the various moves that are particularly

relevant and important for the teaching of mathematical principles. Since

the moves have already been discussed in a previous section, we will focus

here on the context in which the moves are likely to occur and/or be exem-

plified through protocol materials.

Review concepts (interpretation move). Sometimes the use of this move

is triggered by a student asking for clarification of the meaning of a par-

ticular term in a principle. Or a teacher may, a priori, ascertain that

students will have difficulty with a particular term in a given principle

and, hence, review it.
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Analysis: pointing out the hypothesis and conclusion implicit in a

generalization (interpretation move). A teacher might use this move in

anticipation of student difficulty and/or to simply provide a basis for

better understanding a principle that is a generalization. Students, by

the nature of their errors, indicate their confusion in understanding the

inherent implication of a generalization. In such cases, a teacher might

offsetthe difficulty by using an analysis move. Consider the situations

described below:

Suppose a student is trying to prove the following generalization.

The quadrilateral formed by joining the midpoints of
the adjacent sides of a rectangle is a rhombus.

Often students experience difficulty in proving this and other similar

statements because of their inability to establish what conditions are

assumed true and what conditions are to be established. In short, they

are unable to identify the hypothesis and conclusion of the implied con-

ditional statement. To alleviate or prevent such problems, a teacher can

express the generalization as the following conditional statement:

If a quadrilateral is formed by joining the midpoints
of the adjacent sides of a rectangle, then the result-
ing quadrilateral will be a rhombus.

and, consequently, help students identify the hypothesis and conclusion.

Consider another situation in which a student is given an obtuse tri-

angle with the measures of the shorter sides being 5 and '2. The student

proceeds to find the measure of the third side by taking the square root

of 5
2
+ 12

2
. The student may feel that he is justified in such an approach

because of the Pythagorean Theorem. However, such is not the case. What

the student has failed to realize is that he first have a right tri-

angle before he can appropriately apply this theorem. That is, he failed

to realize the condition indicated in the hypothesis of the generalization.

An example was given earlier of a student misusing a generalization (the

Pythagorean Theorem) because he mistakenly used the converse of the theorem.

One might consider an analogous situation in teaching principles that

are prescriptions. That is, students can be alerted as to when it is appro-

priate to utilize a prescription. For example, the prescription:

Invert the divisor and multiply

is applied when students are dividing fractions, not multiplying them.

ou
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Similarly, the prescription:

To square a number multiply it by itself

is followed when one wishes to square a :lumber, rot double the number or

find its square root. By identifying tne conditions ',11 which a prescrip-

tion can be appropriately applied, the analysis move has utility when

applied to prescriptive principles.

Paraphrasing (interpretation move). This move could occur Any time

a teacher felt it usful to state or have a student state the principle

in terms of less complex language, or in terms of a diagram. For example,

it might be insightful to have a st'ident state the Pythagorean Theorem in

terms of the diagram below:

c

2
Should a student state the usual equation

"a b2
c2 ", then it is unlikely

he understands the theorem. On the other hand, should the student, in para-

phrasingphrasing the theorem, state the correct equation
c2

a2 ", then one

would be more justified in concluding the student understands the theorem.

Prescriptive principles, too, can be paraphrased. Students can explain

in their own words how to follow a given algorithm indicated by one or more

prescriptions.

Instantiation (interpretation cv justification move). As discussed

previously, an instance of a generalization is obtained by replacing each

of the variables in the generalization with appropriate constants. The

logical aspect of produci..., instances is the same regardless of their pur-

pose. Whether an instance is for clarification, or for justification pur-

poses, cannot always be determined.

However, there are some verbal cues which may signal the reasor an

instantiation move occurs. For example, if a student is grappling with the

generalization:

One less than the square of any odd number is
divisible by 8



and claims he does not understand it, then he is probably asking for an

instance to help him interpret the generalization. If a teacher generates

an instance using the number 5 (52 - 1 = 24 and 24 is divisible by 8), the

student may be satisfied. On the other hand, if a student questions whether

or not the generalization holds for all odd numbers, then he is probably

seeking justification. If such is the case, then examining instances involv-

ing a wide sampling of odd numbers (e.g., positive, negative, small, large)

may convince him the generalization is true. If not, then a proof may be

required.

When the concept of instantiation is applied to prescriptions the

result is essentially the selection of an element from the proper domain

and the demonstration of the prescription. Given the usual prescription

for dividing two fractions (stated above), an instantiation move would

involve selecting two fractions and demonstrating the prescription utiliz-

ing the selected fractions.

Verbal cues indicating the need for instantiation moves for interpreta-

tion include:

Let us consider the case where...

Let us take a specific case.

For example,...

Wolfe (1969) identifies several verbal cues which indicate that justification

is desired. Among these are:

Show me the statement is true.

How do you know that?

Can you prove it?

Convince me it's true.

Why did you do it that way?

These statements seem to suggest that justification is required, either by

instantiation or by some other means.

Searching_ for a counterexample (justification move). A teacher might

use this method if students were unable to grasp a deductive proof. Or

students might contend that a certain generalization is false, whereupon

a teacher might respond:

Well, if it is false, then you should be able to
give me a counterexample. Can you?

41
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If students are unable to produce one, the generalization is likely to become

more believable to them.

Proof: deductive and pragmatic (for prescriptive principles). Various

strategies for a deductive proof were discussed earlier. Generally, formal

mathematical arguments are reserved for students more sophisticated in their

ability to cope with inference schemes. However, the context in which proofs

are given is essentially the same as that for producing instances. The basic

element is the desire to show that a principle is true.

For a prescriptive principle, a deductive proof involves establishing

that the prescription in question is a logical consequence of established

generalizations. A pragmatic "proof" is showing students that the end result

of following a prescription is correct. For exarnle, students might ask

"Why do we bisect a line segment that way?" Such a question seems to indi-

cate that justification for a given procedure is being sought. A teacher

might respond to this question by showing that the procedure is based on

previously learned material, or by measuring the two constructed segments

and determining if they appear to be of equal measure. In some cases, a

teacher may wish to include both methods of justification for a prescription.

An alternative to providing a complete deductive argument is to indi-

cate to students how a proof might be done, but not present the argument in

toto. This is effective when students are mature enough to perceive how the

argument would proceed once its outline is presented.

Applying the principle (application move). Applying a principle, or

indicating to students how a principle might be used, can occur in a number

of ways. The most common context occurs when exercises are provided in

which the principle is utilized. For example, students who have learned

the principle:

For all real numbers a, b, and c such that a t 0,

if ax2 + bx + c = 0, then x = -b ± b2 - 4ac

2a

might then be required to apply it in solving equations such as:

2x
2
- 4x + 3 = 0.

They might also be asked to utilize the principle to produce another principle:

The sum of the roots of a quadratic equation
b

written as ax
2

+ bx + c = 0 is --
a
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In short, principles can be applied in solving problems or in generating

knowledge previously unknown to students.

Rationale for Selection of the Concepts

It has been previously argued that concepts and principles are of

primary importance in mathematics. It seems clear, then, that the learn-

ing of mathematical concepts and principles is essential if mathematics

is to be meaningful for students. Because of this, it seems highly rele-

vant to identify and explicate teacher actions dealing with the teaching

of mathematical concepts and principles and to convey these pedagogical

notions to mathematics teachers. This type of knowledge should be a part

of the knowledge base which teachers can draw upon. In reference to this

type of knowledge, Smith (1969) makes the following observations:

The teacher who possesses this sort of knowledge and
language has an extra dimension from which to observe his
own teaching behavior as well as that of his pupils...
Because teachers do not now possess such understanding,
they frequently handle the subject matter of instruction
in superficial ways. Consequently, class discussion often
suffers from undue vagueness and ambiguity, from unfounded
and unchallenged claims, from a failure to develop the
significance of the content (p. 126).

These considerations might lead one to suggest that each move in the taxon-

omies for teaching mathematics concepts and principles should have been

suggested for protocol development. Each of them makes a significant con-

tribution to the teaching of mathematics and, as indicated earlier, is

unique to mathematics education in the sense that the matching of pedagogical

moves with the content to be taught has reached a stage of maturity only in

mathematics education literature.

Nevertheless, it seems plausible that some of these moves would be

equally applicable to other content fields. For example, it is difficult

to visualize a teacher presenting a social studies concept who could not

give examples of that concept and, hence, make use of exemplification moves.

Similarly, a science teacher introducing a principle of physics might very

plausibly tell the class how this principle leads to other principles, and,

hence, make use of a motivation move. Therefore, the claim is not made

that these moves are unique to mathematics education even though they sur-

43



37

faced during work that was done uniquely in this field. A lesser claim is

made, that is, that tax(momies of moves for teaching mathematics concepts

or principles contain concepts which are important to mathematics education.

It can be left to subsequent research to determine their relative importance

as these moves are embedded in strategies which are shown to have a maximum

effect on learning.

Even though these pedagogical moves are not unique to the teaching of

mathematics, those selected for initial protocol development appear to be

less useful in other subject matter fields because mathematics is a body

of analytic knowledge. Contrasted with a body of contingent knowledge whose

truths are established by observations in the external world, mathematical

truths depend on logical equivalences and sequences of valid inferences in

which precision of language plays an important role. Consequently, the

concepts selected either aid in the careful exposition important to the

teaching of mathematics or else aid in approaching these concepts and truths

informally. Thus, we can make the following comments with respect to the

concepts selected for initial protocol development.

Necessary and/or sufficient conditions for mathematical concepts can

be precisely identified in a way in which they cannot be for concepts in

other academic areas. Because mathematical concepts are precise, charac-

teristics that are both common and unique to various concepts can be dis-

cussed. Deductive methods of justifying principles have no counterpart

in other academic disciplines common to the public schools. The application

of principles in establishing additional mathematical knowledge is a conse-

quence of mathematics being a precisely defined body of knowledge. The

identifying of the hypothesis and the conclusion of a generalization stated

as a conditional statement is not unique to teaching mathematics, but it

does take on particular significance when proving and applying mathematical

generalizations. The generation of instances, necessarily true providing

certain conditions are satisfied, is a characteristic unique to mathematics.

Thus, many of the moves identified above are unique and/or particularly

important in teaching mathematical generalizations.

Thus, the moves for teaching mathematical concepts and principles iden-

tified in the preceding section are justifiable as pedagogical concepts to

be illustrated by protocol materials. They ought to be a part of the know-

ledge mathematics teachers have in planning lessons, in teaching and in

evaluating students' progress.
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